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EVALUATION TECHNICAL ASSISTANCE UPDATE
for OAH & ACYF Teenage Pregnancy Prevention Grantees

December 2013 • Update 5

Frequently Asked Questions About The Implications 
of Clustering in Clustered Randomized Controlled Trials (RCTs)

A s  part of the technical assistance (TA) to TPP and PREIS grantees, the evaluation TA team will produce a series of 
updates that discuss topics relevant to the rigorous impact evaluations. Grantees’ requests for TA and conversations 

with TA liaisons determine the topics and questions for these updates. This update answers frequently asked questions 
about the implications of clustering in clustered randomized controlled trials (RCTs).

What is a clustered RCT?

A cluster is a group of individuals or other clusters. For 
example, a classroom is a cluster of students, and a school 
is a cluster of classrooms. A clustered RCT is a randomized 
experiment in which clusters (as opposed to individuals) 
are randomly assigned to treatment and control groups.

What other words do people use to talk 
about clusters in data?

Researchers from different fields may use different terms 
to describe the same thing. For example, one researcher 
may describe data with clusters as nested; another may 
say it has a hierarchical structure; and another may call 
it multilevel data.

Why is it important to adjust for clustering  
in a clustered RCT?

When clusters are randomly assigned to treatment and 
control groups, the variance of the estimated impact 
is typically larger than when individuals are randomly 
assigned. If no adjustment is made for the effect of clus-
tering, statistical significance of impact estimates will 
be overstated.

How does random assignment of clusters 
increase the variance of an impact estimate?

Randomly assigning clusters rather than individuals 
reduces the effective sample size of a study, leading 
to more variability in the impact estimate.

For example, consider a hypothetical experiment in which 
eight children from four families are randomly assigned to 
treatment and control groups, and the outcome of interest 
is the height of the children. Figure 1 shows the height 
(in inches) of each child, grouped by family.

If the eight individual children are randomly assigned 
to treatment and control groups, regardless of their 
families, then there are 70 ways to form a treatment and 
control group.1 If there is no effect of being assigned to 
the treatment group, then the average impact (averag-
ing across all 70 random assignments) is zero, and the 
variance of those impacts is 44 inches. Figure 2 shows a 
histogram representing the distribution of impacts across 
70 random assignments.

If the four families (that is, clusters of children) are ran-
domly assigned to treatment and control groups, then there 
are only six ways to form treatment and control groups. If 
there is no effect of being assigned to the treatment group, 
the average impact (averaging across all six random assign-
ments) is zero, and the variance of those impacts is 100 
inches. Figure 3 shows a histogram representing the distri-
bution of impacts across six random assignments.

The difference in this example between randomly assign-
ing individuals and randomly assigning clusters is stark. 
Although both approaches to random assignment yield 
the same expected (and unbiased) impact, the variance of 
the impact from these two approaches is very different, 
as is the shape of the impact distribution (it is much more 
“lumpy” when clusters are assigned).
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Figure 1. Height in Inches of Children in Four Families
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Figure 2. Histogram of Impacts When Children Are Randomly Assigned

D
en

si
ty

-15 -10 -5 0 5 10 15

0.00

0.01

0.02

0.03

0.04

0.05

0.06



3

Figure 3. Histogram of Impacts When Families Are Randomly Assigned
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When is it NOT necessary to adjust for a level 
of clustering in an RCT?

If a cluster is neither the unit of random assignment, nor 
the unit of random sampling, then there is no “need” to 
account for clustering. For example, in a study with three 
purposefully (not randomly) selected schools in which 50 
students are randomly assigned to treatment and control 
groups within each of the schools (that is, assignment is 
blocked/stratified by school), there is no need to adjust 
for clustering of students within schools, because schools 
were not randomly assigned or sampled.

It is also unnecessary to adjust for intermediate levels of 
clustering if they are not randomly assigned or randomly 
sampled. For example, in a study in which schools are 

randomly assigned to treatment and control groups and 
which includes health classes from each school, there is no 
need to adjust for clustering of students within classrooms. 
The only clustering requiring adjustment is the clustering 
of students within schools. This adjustment is necessary 
because schools were randomly assigned, but classrooms 
were neither randomly assigned nor randomly sampled.

However, some researchers may choose to adjust for 
clustering even when they are not required to, if they 
deem it appropriate for the research question under con-
sideration. One reason for adjusting for clustering when 
clusters were not randomly sampled or assigned is to 
generalize findings to some larger population (sometimes 
called a “super population”).
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What Can Be Done to Improve Statistical Power in a Clustered RCT?

Studies that randomly assign individuals can usually detect smaller impacts than studies that randomly assign clus-
ters due to the larger variance of the impact estimate that results from clustering. That is, studies that assign clusters 
have less statistical power (Schochet 2008).

Schochet, Peter. “Statistical Power for Random Assignment Evaluations of Education Programs.”  
Journal of Educational and Behavioral Statistics, vol. 33, no. 1, 2008, pp. 62–87.

Reducing the variance of the impact estimate will improve statistical power in a clustered RCT. The variance  
of an impact estimate in a clustered RCT depends on primarily three factors: (1) the intraclass correlation (ICC),  
(2) the cluster-level regression R2, and (3) the sample size (particularly the number of clusters).

The ICC is the proportion of total outcome variance that is due to between-cluster variance. A larger ICC leads  
to a greater effect of clustering. One strategy to reduce the ICC is to ensure that the study includes clusters  
(for example, schools) with outcomes of interest that are as similar as possible.

The cluster-level regression R2 is the proportion of between-cluster variance that can be explained by covariates.  
A larger cluster-level regression R2 reduces the effect of clustering. One strategy to increase the cluster-level  
regression R2 is to collect data on baseline variables known to be highly correlated with the cluster-level mean  
outcome and then include those variables as covariates when calculating regression-adjusted impacts.

In all RCTs, a larger sample size will lead to a smaller variance. In a clustered RCT, increasing the sample size  
at the cluster level is usually more beneficial than increasing the sample size at the individual level. We illustrate  
this point in Table 1: Doubling the number of clusters reduces the minimum detectable impact (MDI) more than  
does doubling the number of individuals per cluster.

Table 1. Minimum Detectable Impacts Associated with Sample Size Increase at the Cluster and Individual Levels

Number
of Clusters

Number of 
Individuals 
Per Cluster

Total Number
of Individuals

Minimum 
Detectable Impact 
(percentage points)

Original 20 50 1,000 12.4
Double clusters 40 50 2,000 8.7
Double individuals per cluster 20 100 2,000 11.2

Note: These calculations assume a dichotomous outcome with a prevalence rate of 30 percent, an ICC of 0.03, and no covariate adjustment.
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How can you account for clustering when 
calculating the variance of an estimated 
impact in a clustered RCT?

Several statistical methodologies can be used to account 
for clustering when calculating the variance of an estimated 
impact in a clustered RCT. We suggest the following 
three methods:

1. Mixed Effects Modeling. Also known as “hierarchical 
linear modeling (HLM)” or “random effects,” this 
approach to linear regression accounts for clustering 
using maximum likelihood to estimate parameters that 
specify the structure of the covariance between individu-
als in clusters.

Hsiao, C. Analysis of Panel Data, 2nd edition. 
Cambridge, UK: Cambridge University Press 
(Econometric Society Monographs, No. 34), 2003.

Raudenbush, S.W. and A.S. Bryk. Hierarchical Linear 
Models (Second Edition). Thousand Oaks, CA: Sage 
Publications, 2002.

2. Generalized Estimating Equations (GEE). Also 
known as “the sandwich estimator,” this approach 
to linear regression accounts for clustering without 
distributional or modeling assumptions (it is “nonpara-
metric”). Rather, it accounts for clustering based on 
the average estimated covariance among observations 
within each cluster.

Williams, R.L. “A Note on Robust Variance 
Estimation for Cluster-Correlated Data.” 
Biometrics, vol. 56, 2000, pp. 645–646.

3. Between-Cluster Estimation. This simple approach 
uses ordinary least squares (OLS) regression on data 
that has been aggregated (in other words, “averaged,” 
or “collapsed”) to the cluster level.

Hsiao, C. Analysis of Panel Data, 2nd edition. 
Cambridge, UK: Cambridge University Press 
(Econometric Society Monographs, No. 34), 2003.

What are the advantages and disadvantages of 
these approaches to accounting for clustering?

To assess the trade-offs in using the three methods 
described above, we conducted simulations of clustered 
RCTs. In our simulations, we created a dichotomous out-
come with a prevalence rate of 20 percent, using different 
assumptions about sample size and covariate adjustment. 

We also conducted the same simulations using a continu-
ous outcome. We describe these simulations in detail in 
the appendix to this FAQ. The following points highlight 
our most important conclusions:

A. All methods examined are always substantially better 
than no adjustment at all. This conclusion is not sur-
prising—theory tells us that it is important to adjust for 
clustering, and the simulation findings are consistent 
with theory.

B. There are important differences between studies with 
a very small number of clusters and studies with a 
larger number of clusters. We simulated studies with 
6 clusters, 30 clusters, and 150 clusters, all evenly 
divided between treatment and control groups. From 
the simulations with just 6 clusters, we found:

1.	 Covariate	adjustment	offers	little	to	no	benefit.
For all the methods examined, there is little to 
no improvement in precision when adjusting for 
covariates. In fact for the “between-cluster esti-
mation” method, adjusting for covariates actually 
increases the standard error. (When the number 
of clusters is 30 or 150, there is a precision gain 
from covariate adjustment).

2. All methods “work” when the clusters are equal.
When the six clusters all include the same number 
of individuals, all three methods used to adjust for 
clustering yield accurate p-values.

3. GEE does not “work” when the clusters vary 
substantially in size. When the clusters vary 
in size, using GEE yields p-values that are too 
small—that is, GEE overstates statistical sig-
nificance. This effect does not occur with other 
methods. (When the number of clusters is 30 or 
150, GEE still overstates statistical significance 
but to a much smaller degree).

C. Between-Cluster Estimation Is Surprisingly Effective.
In contexts other than clustered RCTs, this approach 
can lead to regression coefficient estimates with much 
larger variance than the other two approaches. This 
effect occurs because the approach does not take 
advantage of within-cluster variation in explanatory 
variables of interest (that is, variables on the “right-
hand side” of the regression equation). But in a 
clustered RCT, treatment status does not vary within 
clusters (though other covariates might). Consequently,
we see from the simulation results that this method 
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1 The number of possible (unique) random assignments = ,
where N is the number of units being assigned (assuming equal 
treatment and control groups). N! is the factorial of N. For example, 
5! = 5*4*3*2*1 = 120. 

produces impact estimates that are just as precise as the 
other methods.2

2 One case is a partial exception. When the number of clusters is small, 
covariate adjustment noticeably increases the standard error when using 
this method. But, when the number of clusters is small, the standard error 
when using this method without covariate adjustment is about the same 
as the other methods with or without covariate adjustment.

 Due to the simplicity of this method, 
these findings suggest that it could be an appealing 
alternative to the more complex approaches, at least 
when the only regression coefficients of interest are 
those for variables that do not vary within clusters.

Can different cluster-adjustment methods lead 
to substantively different impact estimates?

If the true impact of the program is the same for all 
clusters, then the three methods should offer very similar 
impact estimates.

However, if program impacts vary across clusters, then 
different cluster-adjustment methods can yield differ-
ent impact estimates (Schochet 2009). This effect occurs 
because the methods differ in how they weight clusters 
when calculating impacts. We recommend sensitivity 

analyses to assess whether conclusions regarding inter-
vention effectiveness change under alternative methods.

Schochet, Peter Z. The Estimation of Average 
Treatment Effects for Clustered RCTs of Education 
Interventions (NCEE 2009-0061 rev.). Washington, 
DC: National Center for Education Evaluation and 
Regional Assistance, Institute of Education Sciences, 
U.S. Department of Education, 2009.

Endnotes

This update was written by John Deke from Mathematica Policy Research for the HHS Office of Adolescent Health under contract 
#GS-10F-0050L, Task Order No. HHSP233201300416G
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TECHNICAL APPENDIX

In this technical appendix to the document, “Frequently Asked Questions About the Implications of Clustering in Clustered Random-
ized Controlled Trials (RCTs),” we describe the simulations we ran to answer the question, “What are the advantages and disadvan-
tages of these approaches to accounting for clustering?” We also present tables of findings from those simulations.

Simulation Details

We used a Monte Carlo simulation to assess the performance of different methods to adjust for clustering in RCTs. For all simulations, 
we used the same basic procedure:

1. Randomly generate the following variables (all are normally distributed with mean 0 and variance 1):

a. e—an individual-level error term

b. u—a cluster-level error term

c. X—an individual-level covariate

d. Z—a cluster-level covariate

2. Construct a continuous variable, Y*, using the formula 

with the following parameter values:

a. ρ = 0.10 [the intraclass correlation (ICC)]

b.  [the individual-level regression R2]

c.  [the cluster-level regression R2]

3. For simulations for which you desire a continuous outcome (Y ), set Y = Y*. For simulations for which you desire a binary outcome 
(Y ) with prevalence rate PR, set Y equal to 1 if Y* is less than the PR-th percentile of Y* and 0 otherwise. For all of our simulations 
of binary outcome variables, we selected a prevalence rate of 20 percent.

4. Randomly assign half of the clusters to a treatment group and half to a control group. Note that Y is not a function of treatment 
status, meaning that the true impact of being assigned to the treatment group is zero.

5. Calculate impacts, standard errors, and p-values using the following four methods, each with and without covariate adjustment (for 
a total of eight impacts):

a. Naïve OLS (no adjustment for clustering)

b. Mixed Effects (also known as hierarchical linear modeling)

c. Generalized Estimating Equations (GEE)

d. Between Estimator (OLS regression using data aggregated to the cluster level)

6. Repeat steps one through five 10,000 times, saving the impact and standard error estimates from each replication.

7. Calculate the “true” standard error of the impact for each estimation method as the standard deviation in estimated impact across 
all 10,000 replications. Calculate the “true” type-one error rate as the proportion of times that the estimated p-value falls below 5 
percent (this proportion should equal 5 percent if the estimation method is working properly).

We applied this procedure for various outcomes (binary and continuous) and sample sizes, and with or without covariate adjustment.

Simulation Findings

Results from the simulations described above are reported in Tables A.1 and A.2. The values reported in the table cells are the simula-
tion-based estimates of the type-one error rate. As described above, this rate should equal 5 percent. Deviations from 5 percent indicate 
that a method is calculating standard errors inaccurately and/or unreliably.
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Table A1. Simulation-Based Comparisons of Cluster-Adjustment Methods–Binary Outcome

Naïve OLS Mixed Effects GEE Between Estimator
Covariate 
Adjusted?

Standard 
Error

Error 
Rate

Standard 
Error

Error 
Rate

Standard 
Error

Error 
Rate

Standard 
Error

Error 
Rate

6 schools: 20 students per school
No 0.102 0.142 0.102 0.013 0.102 0.035 0.102 0.054
Yes 0.107 0.11 0.107 0.009 0.107 0.038 0.145 0.048

6 schools: 2 with 10 students, 2 with 50 students, 2 with 100 students
No 0.1 0.357 0.095 0.037 0.1 0.098 0.093 0.057
Yes 0.097 0.233 0.096 0.023 0.097 0.082 0.125 0.049

30 schools: 10 with 10 students, 10 with 50 students, 10 with 100 students
No 0.044 0.378 0.041 0.051 0.044 0.064 0.041 0.052
Yes 0.035 0.269 0.033 0.052 0.035 0.06 0.033 0.046

150 schools: 50 with 10 students, 50 with 50 students, 50 with 100 students
No 0.02 0.371 0.019 0.052 0.02 0.057 0.019 0.058
Yes 0.015 0.28 0.015 0.049 0.015 0.051 0.015 0.047

Source: Monte Carlo simulations with 10,000 replications.

Table A2. Simulation-Based Comparisons of Cluster-Adjustment Methods–Continuous Outcome

Naïve OLS Mixed Effects GEE Between Estimator
Covariate 
Adjusted?

Standard 
Error

Error 
Rate

Standard 
Error

Error 
Rate

Standard 
Error

Error 
Rate

Standard 
Error

Error 
Rate

6 schools: 20 students per school
No 0.309 0.251 0.309 0.021 0.309 0.035 0.309 0.05
Yes 0.295 0.193 0.295 0.014 0.295 0.038 0.417 0.048

6 schools: 2 with 10 students, 2 with 50 students, 2 with 100 students
No 0.335 0.498 0.303 0.04 0.335 0.101 0.306 0.056
Yes 0.307 0.386 0.288 0.044 0.307 0.091 0.392 0.054

30 schools: 10 with 10 students, 10 with 50 students, 10 with 100 students
No 0.148 0.509 0.132 0.047 0.148 0.064 0.135 0.056
Yes 0.111 0.423 0.102 0.054 0.111 0.069 0.104 0.061

150 schools: 50 with 10 students, 50 with 50 students, 50 with 100 students
No 0.067 0.512 0.059 0.051 0.067 0.056 0.061 0.065
Yes 0.048 0.426 0.044 0.052 0.048 0.052 0.045 0.057

Source: Monte Carlo simulations with 10,000 replications.
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