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OVERVIEW
There are several potential strategies that Tier 1B grantees 
could use to evaluate the impact of scaled-up programs, 
depending on the type of available data. A few that have been 
mentioned during Office of Adolescent Health (OAH) Tier 
1B TA webinars are propensity-matched cross-sectional 
designs (which use data from one follow-up time point), 
difference-in-differences designs (which use data from 
one pre-intervention and one follow-up time point), and 
interrupted and comparative interrupted time series 
designs (which use data from many historical and one or 
more follow-up time points). The type of data available – and 
corresponding study design – has important implications 
for the sample size (i.e., number of communities) needed 
to detect policy-relevant impacts. This brief uses a general 
example to show how statistical power varies across these 
three types of community-level designs. 

WHAT IS A POWER ANALYSIS?
A power analysis is a planning tool that evaluators should use 
during the study’s design phase to help determine the study’s 
likelihood of detecting meaningful impacts if they exist. If 
the power analysis determines that the study does not have 
a reasonable chance of detecting meaningful impacts, then 
the evaluator could take steps such as increasing the sample 
size (e.g., by planning to recruit additional treatment and/or 
comparison communities) or revising the study’s design.
There are two related questions that an evaluator might want 
to address through a power analysis: 
1.	 Given a particular study design, a given sample size, and 

a given data analysis plan, what is the probability that 
hypothesis testing will yield a statistically significant 
result if the true impact of the intervention is some 

particular size? This probability is called the statistical 
power of the hypothesis test. (Example question: “If 
the intervention reduced the teen birth rate by 5 births 
per 1000 girls, what would be the probability that the 
evaluation would detect that impact?”). 

2.	 Given a particular study design, a given sample size, 
and a given data analysis plan, what is the smallest 
true impact of the intervention that can be detected 
with appreciable statistical power? This is called the 
minimum detectable impact (MDI). (Example 
question: “What is the smallest intervention-caused 
reduction in the teen birth rate that can be detected 
with a probability of 80 percent?”). Because different 
evaluations of the same type of intervention may use 
different outcomes, MDIs can be standardized (i.e., 
expressed in terms of the standard deviation of the 
outcome) in order to make them more comparable 
across evaluations. A standardized MDI is called a 
minimum detectable effect size (MDES). 

Both of these questions fall under the heading of power 
analysis. However, many evaluators view an 80 percent 
probability of detecting impacts as the minimum acceptable 
level of statistical power. For that reason, this brief will focus 
on the second question; i.e., the brief will compare the MDES 
across various study designs holding statistical power and 
sample size constant.
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MDE vs. MDI 
The brief will focus on MDES rather than MDI 
because the MDI for any given evaluation depends 
on the base rate of the outcome, which varies 
considerably across grantees. For example, an 
MDI of 10 births per 1000 would correspond 
to a reduction of 50% in a community where 
the baseline rate was 20 births/1000, but only 
a reduction of 25% in a community where the 
baseline rate was 40 births/1000. In contrast, the 
MDES is comparable across communities with 
much different baseline outcomes. 

While there is no hard-and-fast rule for what constitutes an 
acceptable MDES, there are some general guidelines: 
•	 A study could be thought of as adequately powered 

if it has a high probability of detecting impacts of the 
size found in previous evaluations of similar or even 
competing programs (where again “high probability” 
is typically defined as 80 percent). If it does not, then it 
would be more difficult to know if the new program is 
similarly effective as other options.. 

•	 Alternately, a cost-benefit analysis could be used to 
determine the smallest impact that would be cost 
effective; the MDES could be set accordingly. 

•	 A researcher could appeal to Cohen’s (1986) effect 
sizes, in which an impact of 0.2 standard deviations is 
considered “small,” 0.5 standard deviations is “medium,” 
and 0.8 standard deviations is “large.” Although there 
is some controversy about these thresholds, few 
evaluators would be comfortable implementing a study 
with an MDES of more than 0.5 standard deviations, 
especially in a situation where not all youth in treatment 
communities are exposed to the community-wide 
strategy.  In the data used to develop this brief’s 
examples, an MDES of 0.5 standard deviations 
would translate into an intervention-caused 
reduction of roughly 6.7 births per 1000 teen girls, 
from 38.5 per 1000 prior to the intervention to 31.8 
per 1000 after. 1

The MDES for any given study is a function of several factors, 
including the ratio of treatment to comparison observations, 
the degree to which outcomes are correlated across time or 
people within communities, and—crucially—the analytic 
strategy and sample size.

1	 In the sample of 14 California counties used to develop the brief ’s 
	 examples, the mean birth rate was 38.5 births per 1,000 teen girls, with a 	
	 standard deviation of 13.4 births/1000.

Calculating MDIs/MDESs is reasonably straightforward 
for an individual-level randomized controlled trial (RCT), 
and an OAH TA brief from the last round of TPP funding 
(available here) provides the necessary formulas and an 
Excel spreadsheet tool. Unfortunately, calculating power 
for a community-level quasi-experimental design (QED) is 
substantially more complex. For that reason, this brief 
explains how design choices affect statistical power—and 
thus required sample sizes—for various community-level 
QEDs, but will not provide step-by-step instructions for 
doing power calculations. However, the formulas used for 
each example in the brief are provided as an appendix. We 
encourage you to consult with an experienced evaluator who 
can perform such calculations once you have the basic outline 
of a design.2

For a community-level study, the key sample size 
is the number of communities in the study, not the 
total number of individuals in those communities.
Conceptually, because the Tier 1B strategy is 
community-wide, the outcomes will be measured 
at the community level. This is particularly true in 
a comparison-group design because it would be 
difficult or impossible to identify the comparison 
group at the individual level – i.e., who would 
hypothetically have received or benefited from the 
community-wide strategy if it had been offered. 
For this reason the sample size that feeds into your 
power analysis is also the number of communities 
rather than the number of individuals. 

EXAMPLE COMMUNITY INTERVENTION
The remainder of this brief walks through MDES/MDI 
calculations for various research designs using an example 
that illustrates key concepts. Suppose that an evaluator is 
asked to study a community-level TPP strategy with the 
following characteristics. The evaluator must determine 
how many communities are needed for the study: 
•	 Treatment and comparison communities = ZIP codes
•	 Outcome = Teen birth rate (mean = 38.5 per 1000 female 

teens age 15-19)
•	 Data Source = Vital Statistics			
•	 Years of Data Available = Up to 12 years total; 10 years 

pre-intervention and two years post-intervention

2	 Note that the validity of a QED relies on strong assumptions that cannot 	
	 entirely be appraised from the data collected. For these designs, formulas 	
	 and results for MDIs/MDESs and for statistical power are invalid to 		
	 the extent that the validating assumptions do not hold. In the figures we 	
	 present below, we are always assuming the validating assumptions hold.

http://www.hhs.gov/ash/oah/oah-initiatives/assets/mdi-tabrief.pdf
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“Intervention” in the Tier 1B context refers to 
the entire strategy: community mobilization, 
evidence-based programming, linkages and 
referrals to youth-friendly health care, safe and 
supportive environments, trauma-informed and 
inclusive services.

Throughout this example, outcome values, variances, and 
other statistical properties were chosen to be similar to those 
OAH grantees might encounter in real life. For the sake of 
illustration, we calculated these values using a dataset of 
teen births by county in California, restricting our sample to 
counties that had a teen birth rate higher than the national 
average of 26.5 births per 1000 teens age 15-19 in 2013.3  The 
average teen birth rate in this sample of 14 counties was 
38.5 births per 1,000. If you conduct a power calculation for 
your own evaluation, you should find data that you believe 
represent the specific communities you serve (e.g., ones with 
exceptionally high teen birth rates). 

Scenario #1: Follow-up Data Only 
(Cross-Sectional Quasi-Experimental Design)  
Suppose that historical data on the outcome of interest 
(e.g., teen births) are not available, meaning outcomes can 
be measured for the treatment and comparison groups 
only at a follow-up time point. In such case, the evaluator 
would implement what is known as a cross-sectional 
quasi-experimental design (QED). Typically, the comparison 
group would be selected using a process such as propensity-
score matching on baseline characteristics. Unlike RCTs, 
matching designs ideally start with a large pool of potential 
comparison units (e.g., ZIP codes), and only the most 
appropriate treatment-comparison matches are retained 
in the analytic sample. (In practice, many or most of the 
potential comparison pool may go unused).  Even then, it 
will not be possible to establish baseline equivalence on the 
outcome so the evaluation may lack face validity. In addition, 
the following example shows that community-level cross-
sectional QEDs are not typically well-powered due to the 
absence of baseline measures of the outcome.

In a QED the comparison group will not look precisely like 
the treatment group, even after matching. If nothing were 
done to correct for differences between treatment and 
comparison communities, the resulting impact estimate 
could be biased and misleading. Fortunately, it is possible 

3	 We converted the county-level findings to the ZIP-code level for use in the 	
	 following examples using the intra-class correlation.

to statistically adjust for observable pre-intervention 
differences between the groups; e.g., using regression 
modelling. Whether and how this affects power  depends 
on the details of the analysis and how good the comparison 
group was to begin with. 

Figure 1 below shows the tradeoff between the number of 
communities in the evaluation (treatment plus comparison) 
and the MDES for a community-level QED using our sample 
of California ZIP codes, assuming that one comparison ZIP 
code is matched with each treatment ZIP code. 

Figure 1. Cross-sectional QED

Note: Details of the calculation used to generate this figure are shown in the Appendix. 

As Figure 1 confirms, community-level cross-sectional 
QEDs are not well-powered. Even with 120 communities 
(60 treatment and 60 comparison), the study would 
not quite be powered to detect medium-sized impacts. 
In our sample, a medium-sized impact of 0.5 standard 
deviations corresponds to an impact of approximately 6.7 
births per 1000, or an intervention-caused reduction in the 
teen birth rate from the mean of 38.5 per 1000 to a new rate of 
31.8 per 1000. Fifty communities – with 25 in the treatment 
group – would be required to detect even very large impacts 
of 0.8 standard deviations, which represents a reduction 
in the teen birth rate of 10.7 births per 1000 (from 38.5 per 
1000 to 27.8 per 1000) in our sample. This implies that even 
large cross-sectional QEDs could fail to detect impacts of 
successful programs. It is for that reason that we strongly 
recommend against such a design.

Note that the MDESs in Figure 1 correspond to a design in 
which each treatment community is matched with exactly 
one comparison community. If data were available for a 
sufficient number of potential comparison communities, 
it might be possible to match more than one comparison 
community to each treatment community, effectively 
increasing the analytic sample size.  Doing so will improve 
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power – but our simulations suggest that the improvement 
is not dramatic for any of the designs outlined in this brief. 
That said, adding comparison communities will always 
increase power and could be worthwhile if the cost of 
obtaining data is  low.

Scenario #2: Data from Baseline and Follow-Up 
(Difference-in-Differences / Pre-Post with  
Comparison Group) 
Both the face validity and the statistical power of a QED can 
be improved by using variation over time. If the study has 
both treatment and comparison groups, and the evaluator 
is able to obtain outcome data from immediately before the 
intervention starts and again at follow up in each group, 
the evaluator might choose to implement a design called 
“Difference-in-Differences” (DiD).

The idea behind DiD is that (as in any QED) the treatment 
and comparison communities are likely to be somewhat 
different prior to the intervention no matter how 
carefully they were matched. Rather than rely on baseline 
demographic characteristics alone to indirectly net out 
these differences as in a cross-sectional QED, DiD nets out 
differences more directly by using the baseline measure of 
the outcome itself. In essence, DiD compares the change 
in the treatment group with the change in the comparison 
group, and estimates the impact as the difference between 
the two. 

Figure 2 shows how the MDES is affected by sample size in a 
study using a DiD design.

Figure 2. Difference-in-differences

 

Note: Details of the calculation used to generate this figure are shown in the 
Appendix. 

Comparing Figures 1 and 2 reveals that in addition to having 
more face validity than a cross-sectional QED, the DiD 
approach yields slightly better power for a given sample size 
(although not much in this example dataset). The reason 
is that the baseline outcome measure explains some of the 
between-community variation in the follow-up outcome 
measure. In this example, a DiD would require a sample of 
120 communities evenly divided between the treatment and 
comparison groups to detect moderately-sized impacts of 
0.5 standard deviations (again representing a reduction in 
the teen birth rate in our sample from 38.5 per 1000 to 31.8 
per 1000).

Scenario #3: Data from Many Pre-Intervention 
Time Points (Comparative Short Interrupted 
Time Series) 
Even with a well-matched comparison group that shows 
baseline equivalence on the outcome of interest (or can be 
made equivalent using a DiD methodology), you may be 
able to further improve your power by obtaining data on 
the outcome of interest for several time points before 
the Tier 1B community intervention began. Extant 
administrative data sets often include such historical data, 
which you can use to considerably strengthen the analysis, 
both in terms of face validity and statistical power, using a 
comparative short interrupted time series design (C-SITS).

The idea behind C-SITS is that it allows you to find a 
comparison group with similar baseline trends, not just 
similar baseline characteristics – or, more accurately, to use 
statistical adjustments to control for baseline differences in 
outcome trends.

The first Tier 1B TA webinar (which you can review here) 
used a graph similar to the one below to illustrate the basic 
concept of a C-SITS. Although C-SITS analysis can be fairly 
complex, this basic example shows in principle how this 
method can be used for analysis.

http://www.hhs.gov/ash/oah/oah-initiatives/assets/designing-community-level-evaluation-webinar.pdf
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Figure 3. C-SITS

Figure 3 shows time plotted on the X axis, with the 
intervention occurring right in the middle of the timeline, 
and the outcome (teen birth rate) on the Y axis. The evaluator 
has obtained data for several pre-intervention time points, 
shown as dark blue dots, which demonstrate a trend in 
each group. Notice that the pre-intervention trend lines are 
almost, but not quite, parallel. Extending those trends into 
the future (light blue dots) shows what you would expect to 
happen in each group in the absence of the intervention. As 
shown, the comparison group observation happens to fall just 
where expected (although this will not always happen). The 
treatment group observation is a little better than expected. 
The estimated impact is the difference between what 
was expected to happen and what actually happened. 

By incorporating even more information than the DiD, 
C-SITS will usually improve power compared with a 
DiD. Figure 4 shows the tradeoff between the number of 
communities in the evaluation (treatment plus comparison) 
and the MDES for a C-SITS that incorporates 10  
pre-intervention outcome measures plus the two years of 
follow-up:

Figure 4. C-SITS with time trend

Note: Details of the calculation used to generate this figure are shown in the 
Appendix. 

Figure 4 shows that to detect a small effect (using the 
definition of 0.2 standard deviations) with our example 
dataset would require 100 communities (50 treatment 

communities and 50 comparison communities). In 
the dataset used for this example, a small effect would 
correspond to a reduction in the teen birth rate of 2.7 births 
per 1000. To find a medium effect (0.5 standard deviations, 
or 6.7 births per 1000) would require only 16 communities 
(8 treatment and 8 comparison) – 104 fewer than a cross-
sectional design! Because administrative data are sometimes 
easy to obtain for several years prior to the intervention and 
can substantially increase power (and face validity), we 
highly recommend attempting to find and use such data. 

SUMMARY
Because statistical power in a community-level 
evaluation is driven by the number of communities 
in the sample rather than the number of individuals, 
most such evaluations will face a challenge in obtaining 
a large enough sample to detect moderate impacts. 
However, the sample size required to detect policy-relevant 
impacts in any particular study depends on that study’s 
design and analytic methodology.

Therefore, evaluators can use study design as a tool 
to minimize this challenge, especially by obtaining 
administrative data on the outcomes of interest for many 
pre-program years. 

Cross-sectional designs – those that only measure the 
outcome at follow up, especially cross-sectional QEDs – 
require very large samples to detect even moderately-sized 
impacts. In this brief’s example, more than 120 communities 
would be required to detect such impacts in a cross-sectional 
QED. Adjusting for demographic and socioeconomic 
covariates in a regression model can moderately reduce these 
numbers. However, most evaluators are unlikely to be in this 
situation because pre-intervention outcome measures can 
almost always be obtained from administrative sources. 
Taking advantage of variation over time – i.e., obtaining 
pre-intervention measures of the outcome of interest and 
incorporating them in the analysis – can substantially reduce 
the required sample size compared with a cross-sectional 
design. As can be seen by comparing a difference-in-
differences strategy (Figure 2) with a comparative short 
interrupted time series strategy (Figure 4), the more  
pre-intervention years for which outcome data can be 
obtained the better. In the brief’s example, using 10  
pre-intervention years’ worth of data in a C-SITS reduces 
the required sample to only 16 communities – which is nearly 
an order of magnitude less than a cross-sectional QED. 
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APPENDIX
This appendix provides the formulas and assumptions used to produce Figures 1, 2, and 4. It is meant for a technical audience 
and therefore provides little descriptive explanation. Parameter values were calculated using a dataset of 14 California 
counties with birthrates higher than the national average in 2013, and (where appropriate) converted to ZIP-code level 
parameters using an Intra-Class Correlation (ICC) obtained from similar data. For each figure, the minimum detectable 
impact (MDI) was calculated as 

1.	

where           and         are quantiles from a t-distribution,       is the coefficient on the treatment indicator in a regression model 
(i.e., the impact estimate), and SE           is the standard error of the impact estimate or equivalently                              . To obtain a 
minimum detectable effect size, we divide the MDI by a standardization factor equal to the standard deviation of the outcome 
at the community (i.e., ZIP-code) level; in this case 181.44. 

Figure 1: ANCOVA (One year of data available at follow up)

The calculations underlying Figure 1 presume that the evaluator will estimate impacts using a regression model of the 
following general form: 

2. 	

where:

						      is the outcome of interest for community  
						      k (e.g., teen birth rate)

						      = 1 if community k is a treatment community, 0 if comparison community.

						      are other model covariates (e.g., community-level demographics).

						      is a residual for community k, assumed distributed  

The variance of the treatment effect,                          , yielded by model 2 is: 

3. 		

where: 

						      is the variance of the outcome measure in the follow-up year for all treatment and  
comparison communities = 181.

			
						    

						      is the net proportion of outcome variance explained by the predictor variables. We  
conservatively assume this is equal to zero in the absence of pre-intervention data.

			
						    
 
						      is the pooled treatment + comparison sample size (number of communities), which is allowed  

to vary in Figure 1. 
		

						    

						      is the proportion of communities that are in the treatment group; we set this equal to 0.5.
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Figure 2: Difference in Differences (One year of pre-intervention data; one year of follow-up data)

The calculations underlying Figure 2 presume that the evaluator will estimate impacts using a regression model of the 
following general form, using one year of pre-intervention data and one year of follow-up data: 

4.	

where:

						      is the jth observation on community k,

						      = 1 if community k is a treatment community, 0 if comparison community

						      = 1 if observation in year j is post-treatment, =0 if pre-treatment

						      are other model covariates
			 
						      are fixed dummy variables for communities
 
						      residual for jth observation on community k, assumed distributed
  
	 The variance of the treatment effect,                          , yielded by model 4 is:

5.

where:

						      is the variance of the outcome measure (all years, all treatment and comparison communities)   
= 468.						    

						      is the proportion of variance of the outcome explained by the predictor variable. Because the  
evaluator is testing the null hypothesis that the treatment effect is zero, this equals zero at the  
design phase.

		
						      		
						    

						      This is the proportion of total variance that is accounted for by adding dummy variables for  
communities to the model. This is the semipartial r-squared for communities.4 In the   

		
						      			
						      design phase, when investigators are conceptualizing                              as being equal to zero they can  
						      conceptualize                                       as being the proportion of total variance that is between-  			
						      communities, while the remaining variance can be conceived of as variation over  

time within-communities. In our data, this value is = 0.75.
			

						    
			 
						      This is the proportion of the variance in the outcome that is explained by adding the TrtYr  

variable to the model that already includes the predictor variable and community fixed effects.  
At the design phase, this term is also assumed equal to zero.

		
						      		
						    

				  

4	 The terminology “semipartial r-squared” comes from Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates,  		
	 Hillsdale NJ.
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						      This is the proportion of the variance of the outcome measures that is explained by adding any  
remaining terms (e.g., covariate Xs) to the model that already includes the predictor variable,  
community fixed effects and the indicator for post-treatment years. This term is equal to the  
r-squared from the full model in Equation 4 minus the r-squared from a smaller model that  
does not include the other covariates. For simplicity, we assume this value is = 0.

		
						      		
						      		
						      		
						    
 
						      is a design effect for autocorrelation.  If there is autocorrelation present in the data it   

will inflate the variance of the treatment effect.   For simplicity, we assume that there is zero  
autocorrelation and therefore that the design effect for autocorrelation is equal to 1.

			
						      		
						    

						      is the pooled treatment + comparison sample size (number of communities) across time, which  
is allowed to vary in Figure 2. 						    

						      is the proportion of the observations for which the treatment indicator equals one.

						      Specifically, for the impact model shown in Equation 4, it is the proportion of observation where                                                 
									            ;because assume a balanced design, this = 0.25.

						      This is a measure of the squared correlation between the predictor variable and the community  
fixed effects (or indicators). We have calculated this value as 0.33. 						    

						      This is a measure of the squared correlation between the predictor variable and the term that  
indicates post-treatment observations, TrtYr conditional on the community indicators. We have  
calculated this value as 0.33. 

		
						      		
						    
 
						      This is a measure of the squared correlation between the predictor indicator and the any  

remaining terms (e.g. covariate Xs) conditional on community fixed effects and the indicator  
variable for the post-treatment years. We use a value of zero.   

		
						      		
						    

Figure 4. C-SITS (Ten years of pre-intervention data, two years of follow-up data)

When many years of pre-intervention data are available, the evaluator could estimate impacts using the following regression 
model, which is similar to equation 5 but adds a pre-intervention time trend: 

6. 

where terms are defined as in equation 4, and in addition:

Timej  is a variable indicating the year j to allow for a time trend.

The variance of the treatment effect from this model specification is given by:

7.
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where all terms in common with equation 5 are defined equivalently, with the following exceptions and additions: 

						      the variance of the outcome measure (all years, all treatment and comparison 
communities) has a value of 975.

				  
						    

						      This is the proportion of the variance in the outcome that is explained by adding the Time 
variable to the model that already includes the TrtYr variable, the predictor variable and  
community fixed effects. We have calculated this value as 0.15

		
						      		
						    

						      This is the proportion of the variance of the outcome measures that is explained by adding  
any remaining terms (e.g., covariate Xs) to the model that already includes the predictor  
variable, community fixed effects and the indicator for post-treatment years.  
This term is equal to the r-squared from the full model in Equation 4 minus the r-squared from  
a smaller model that does not include the other covariates. For simplicity, we assume this value  
is = 0.

		
						      		
						    
						      		
						      		
						    

						      This term has a value of 0.0909.

						      This term has a value of 0.4545.

						      		
						    
						    
  
						    

This is a measure of the squared correlation between the predictor indicator and the Time 
variable, conditional on community fixed effects and the indicator variable for the  
post-treatment years. We use a value of 0.091. 

This is a measure of the squared correlation between the predictor indicator and the any  
remaining terms (e.g. covariate Xs) conditional on community fixed effects and the indicator 
variable for the post-treatment years. We use a value of zero.
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